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The calculation of the elastic constants of nematics 

by E. GOVERS and G. VERTOGEN 
Institute for Theoretical Physics, University of Nijmegen, Toernooiveld, 6525 ED 

Nijmegen, The Netherlands 

(Received 23 June, 1986; accepted 6 September 1986) 

A molecular model for nematics is proposed. Its elastic constants are calculated 
and the attendant approximations are discussed. The results are compared with 
those of existing models. 

1. Introduction 
The molecular statistical theory of the elastic constants of nematic liquid crystals 

has been the subject of several studies. Because of the unknown form of the inter- 
molecular interaction these studies concentrate on model systems stressing one or 
some of the characteristic features of the intermolecular interaction that attend the 
underlying molecular structure. Priest [I], Poniewierski and Stecki [2] and Straley [3] 
derived expressions for the elastic constants of a system of hard rods thus stressing 
the repulsive part of the intermolecular interactions. On the other hand Nehring and 
Saupe [4] paid attention solely to the attractive part of the intermolecular interaction 
by considering the influence of the induced dipoledipole interaction. The combined 
influence of anisotropic repulsive and attractive interactions was analysed by Stecki 
and Poniewierski [5] and Gelbart and Ben-Shaul [6] by adding an attractive term to 
the hard core model, and by Dunmur and Miller 171 using a procedure analogous 
to that given in [4]. Finally a pragmatic approach of van der Meer et al. [8] should be 
mentioned; this is based on a model consisting of harmonic intermolecular forces. 

The purpose of this paper is to discuss the elastic constants of a model that can 
be conceived as a Lennard-Jones interaction between rods. Compared with existing 
models the present model takes into account the softness of the repulsive part of the 
intermolecular interaction as well as the connection between the extensiveness of the 
molecule and the orientation dependence of the attractive part. As a consequence of 
the introduction of these new features great calculational problems appear as soon as 
the thermodynamic properties, for example, the temperature dependence of the order 
parameter, are considered. For that reason we shall concentrate on the fully ordered 
state, i.e. the present calculation can only be related to the elastic constants and their 
mutual ratios in the highly ordered nematic state. 

The organisation of this paper is as follows. In $2 the new model is introduced and 
the expressions for its elastic constants are derived. The behaviour of the elastic 
constants as a function of the different parameters is analysed numerically in 93, and 
the results are compared with experiment as far as possible. Finally, in 94, the results 
are discussed, among other things in comparison with the existing models. 

2. Lennard-Jones rods 
The starting point of our model is the Lennard-Jones interaction between spheres. 

A number of spheres can be linked together such that the resulting chain can be 
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32 E. Govers and G. Vertogen 

\ 
Figure 1. Schematic representation of two Lennard-Jones rods, each with length L + B and 

width B. The unit vector a denotes the orientation of a rod, and the vector rij gives the 
mutual position of the rods i and j .  

conceived approximately as a spherocylinder. Next a system of such spherocylinders, 
shown in figure 1, is considered. The spheres of a given chain interact with the spheres 
of a second chain according to the Lennard-Jones interaction 

where E' is the interaction strength and 0 is related to the radius of the spheres. Further 
we assume that the interactions between the spheres of a given chain do not influence 
the resulting intermolecular interactions. Then, the total interaction between two 
spherocylinders i and j is 

with 
r,,(a,b) = lrr, + ba, - aalI, 

where rv is the vector connecting the centres of mass of the rods, the unit vector a, 
gives the orientation of rod i and E = E'eZ with e denoting the number of spheres per 
unit length of the rod. Here B denotes the width of the rods and is described by the 
distance rmln that minimizes u,, in equation (l), giving B6 = 206. The length of the rods 
is L + B. 

Interacting Lennard-Jones rods are now used as a model for a nematic liquid 
crystal. For the sake of simplicity the system is assumed to possess perfect order, i.e. 
a, can be identified with the director at position r,. Without loss of generality r, may 
be chosen as the origin. The vector r, - r, is abbreviated to r; because its deviation 
is small the director at the position r may be expanded with respect to the director at 
thz origin in the following way: 

n(r) = n(0) + rgd,n(0) + +ror,dgdyn(0). (3) 
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Calculation of elastic constants 33  

Then substitution of equation (3) into equation (2) and expansion of the denomi- 
nators to second order in n, gives 

1 BIZ 
( r  + ( b  - a)n(0)l1’ 

- 
2 B6 

Ir + ( b  - a)n(0)I6 
V(r) = - c r L  d a r L  db [[ 

- $ L  - f L  

4 B6 [ Ir + (b -- a)n(O)I’’ Ir + ( b  
(4) 

where summation over repeated indices is implied. The coordinate system may be 
chosen such that n(0) is parallel to the z axis (e(0) = 6(0) = 0). An arbitrary n(r) 
can be written in terms of eulerian angles O(r) and b(r) as 

n(r) = (sin8(r)cosq5(r),sin8(r)sinq5(r),cosB(r)). ( 5 )  

a,n(o> = (a,e,o,o) (6 a) 

a,a,n(O) = (a,a,O, 8,8a,q5 + a,@,& - a,Od,d); (6 b) 

a,a,e + a,ea,q5 + azq5a,e = (a,e)’ - (axe)’, (7 )  

Differentiation of n with respect to r gives 

and 

further 

because surface terms may be neglected. In view of symmetry the interaction in 
equation (4) must be invariant to inversion. Substitution of equations (6) and (7 )  into 
equation (4), using the symmetry argument of the invariance of the expression for the 
direction of r and changing to cylindrical coordinates 

leads to 
x = ecos$,y = @sin$, 

v = v , + v , ,  
where V, is the contribution to V of the undistorted system 

1 B” - &(e,z ,$)  = -6s:’ d u r L  d b [  
2 B6 

- + L  -+L [e’ + ( b  - u + z)’]’ [e’ + (b  - a + 2)’16 ’ 

(9 a) 
and V, is the extra contribution due to the distortion 

V,(e ,z ,$)  = 6~ rL da r L  db [h[2zg’cos2$[(~,8)’ - (d,O)’] 
- :L  - i L  

+ (a - z)[e2cosz$(a,e)z + ~’sin2$(d,8)’ + Zz(aze)2] ]  

[re’ + ( b  - a + z)’14 [e’ + (b  - a + z)’]’ 1 BIZ - B6 

- 2 b 2 ~ 2 ~ o s 2 $ [ ~ 2 ~ o s 2 $ ( ~ , ~ ) 2  + Q2sin2$(d,8)’ + .~’(a,e)~] 
7B1’ 

- 
4 B6 

[re2 + ( b  - a + z)’]’ [e’ + (b - a + z)’I8 
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34 E. Govers and G. Vertogen 

V, results in an increase of the free energy. Using the standard procedure of linear 
response the so-called distortion free energy can be written as [9] 

where g(r ,  n(0)) denotes the pair distribution function in the undistorted system and 
d is the density of the system. Because of symmetry g(r ,  n(0)) does not depend on the 
angle I), introduced in equation (8). Therefore the integration over I) in equation (10) 
can be performed immediately. When the distortion interaction of equation (9 6 )  is 
substituted into equation (lo), the expression for the free energy may be compared 
with that due to Frank [lo], which in terms of the derivatives of the eulerian angle 8 
is 

Fd = d3r[K,(a,8)2 + K2(dy8)2 + K3(az8)2]. (1 1) ‘ S  
The expression appears to be independent of the derivatives of the angle 4. Such a 
comparison gives the elastic constants of the system of Lennard-Jones rods as 

k2 + ( b  4 - B6 a + z)~]’ - [e’ + ( b  7B1’ - a + z)’]~ ] [:I. 
4z2 

- +b2e2 

The problem still remains of finding a suitable distribution function. An exact 
calculation of this function is prohibitively difficult, and therefore it must be approxi- 
mated. The following approximation is used here [9]: 

where &(e,z) is given by equation (9a), j? = [ k T ] - ’ ,  and k is the Boltzmann con- 
stant. It should be noted that the main effect of this distribution function is that two 
molecules can hardly overlap. 

The elastic constants can now be calculated and this must be done numerically. 
An important quantity is the length-to-width ratio R = ( L  + B) /B .  The results of 
the calculations will be presented in the following section. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Calculation of elastic constants 35 

3. Results 
In order to determine the dependence of the elastic constants on, for example, the 

length-to-width ratio of the molecules or the temperature it is important to give an 
acceptable value to the interaction strength E .  Because it is very difficult to calculate 
the transition temperature of the present model, it is not possible to estimate the right 
value of E in that way. A second method is to choose E such that one of the elastic 
constants has the experimentally measured value; this method is used here. Further 
the molecules are assumed to be perfectly aligned, i.e. an elastic constant of a perfectly 
ordered nematic must be used as reference. The experimental quantities K p  obtained 
by Leenhouts et al. [ 111 seem to represent this situation. It should be remarked here 
that the choice of K p ,  or # as reference is totally free; here K p  is chosen. Out of 
the variety of available K p  data, which are all of the same order of magnitude, we 
choose the K p  value of 4-methoxybenzylidene-4'-cyanoaniline (MBCA). The tem- 
perature dependence is chosen such that the material described is in the nematic state, 
for example, /? = 2 x 1Oz0J-I. The density d is selected to be of the right order of 
magnitude [12], i.e. d = 2.5 x 1027m-3. 

Table 1. Variation of the interaction strength E in order to give it a reasonable value; the 
value is given for length-to-width ratio R is 3. In the last column the experimental 

MBCA, whose length-to-width ratio is also about 3. 

- K2 5 
E/Jm-2 K,/10-12N K2/10-I2N K3/1O-'*N K, K, (MBCA)/1O-l2N 

0.63 x 1 0 - ~  4.59 1.56 6.67 0.340 1.454 18.2 
1.25 x 17.1 5.79 17.4 0.337 1.012 18.2 
1.88 x 51.5 17.2 36.7 0.333 0.714 18.2 
250 x 126 41.6 65.7 0.330 0.523 18.2 

Table 2. Influence of the length-to-width ratio, R, on the values of the elastic constants and 
their ratios for E = 1.25 x 10-5Jm-2. 

3 1.71 0.579 1.74 0.337 1.012 
4 8.13 2.14 13.4 0.337 1.645 
5 32.7 11.0 70.0 0.337 2.142 
6 94.3 31.7 237 0.336 2,513 

The results for E are given in table 1, showing that E = 1.25 x 10-5Jm-2 is an 
acceptable reference value; this value will be used in the following. Table 2 shows the 
influence of the length-to-width ratio on the magnitude of the elastic constants and 
their ratios; both the ratio K , / K ,  and the elastic constants themselves increase with 
increasing R. This feature agrees with experiment, so far as the molecules can be 
conceived as rigid rods. The ratio K2jK ,  does not depend on R.  This is also in 
agreement with experiment, although the ratio is a factor of 2 too small. Finally, the 
temperature dependence of the elastic constants has been determined. The results are 
shown in table 3 .  The constants increase with decreasing temperature as expected. The 
ratio K,jK, remains constant, whereas K 3 / K ,  decreases with decreasing temperature. 
These last two features do not agree with experiment. This is certainly due largely to 
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36 E. Govers and G. Vertogen 

Figure 2. The relation between the ratio K,/K, and the length-to-width ratio R;  (1) the dashed 
line results from the harmonic model [8]; (2) the crosses are the experimental results of 
Leenhouts et al. [l I]; (3) the full line is obtained from the present model. 

Table 3. Influence of temperature on the values of the elastic constants and their ratios for 
E = 1.25 x 10-5Jm-2 and R = 3. 

K, 
TIK EC,/IO-"N K J I O - I I N  K3 / 10 I '  N Kl Kl 

- K2 - 

342 1.87 0.628 1.81 0.337 0.969 
3 54 1.77 0.595 1.76 0.337 0.977 
362 1.71 0.579 1.74 0.337 1.012 
3 66 1.69 0.571 1.73 0.337 1.01 9 

the fact that in reality, there exists also a temperature dependence in the order 
parameter. Presently, this quantity is assumed to be one and constant. Therefore, a 
comparison of the temperature dependence of the elastic constants with experiment 
is out of the question. The present calculation only indicates the effect of the corre- 
lation function. 

4. Discussion 
The results of the present model can be compared best with the theoretical results 

of the rather similar approach of van der Meer et al. [8]. Unfortunately, it is hard to 
compare them with other models because the order parameter is not taken into 
account in the present approach. The paper of van der Meer et al. stresses the relation 
between the length-to-width ratio and the behaviour of the ratio K , / K , .  Their result, 
as well as the result for Lennard-Jones rods, is plotted in figure 2. The experimental 
results of supposed rigid rods, as measured by Leenhouts et al., are also indicated in 
that figure. As can be seen, the shape of the curve resulting from the present model 
is in better agreement with experiment than that obtained from the harmonic model 
developed by van der Meer et al. [8]. Regarding the temperature dependence of the 
elastic constants, it should be remarked that a comparison with the harmonic forces 
model is not possible because in that model temperature is not included. 

The ratio K 2 / K I  remains a problem theoretically. Although it varies a little in the 
present model, it still remains more or less equal to the value of +. That situation 
might be improved by making E dependent on the variables a and b in the interaction 
given in equation (2), i.e. by making the interaction strength of the spheres in a given 
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Calculation of elastic constants 37 

chain (cf. figure 1) dependent on their position in the chain. In such a way it would 
be possible to imitate real molecules and to distinguish different groups of atoms in 
a molecule. Another extension that might improve the results is the following. The 
spheres that are used to construct the molecules can be linked together to form disks 
first. Then these disks can be piled up to cylinders. The interactions between these 
cylinders can be considered as interactions between molecules in liquid crystals, where 
the direction perpendicular to the disk plane corresponds to the orientation of the 
molecules. Unfortunately, such a model leads to very complicated calculations. 
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